A Combinatorial Identity with Application to Catalan Numbers 3

نویسندگان

  • Zhi-Wei Sun
  • HAO PAN
  • ZHI-WEI SUN
  • Victor J. W. Guo
چکیده

l k=0 (−1) m−k l k m − k n 2k k − 2l + m = l k=0 l k 2k n n − l m + n − 3k − l. On the basis of this identity, for d ∈ {0, 1, 2,. .. } and ε ∈ {0, ±1} we construct explicit f ε (d) and g ε (d) such that for any prime p > d we have p−1 k=1 k ε C k+d ≡ f ε (d) if p ≡ 1 (mod 3), g ε (d) if p ≡ 2 (mod 3), where C n denotes the Catalan number 1 n+1 2n n ; for example, if p 5 is a prime then 0<k<p−4 C k+4 k ≡ 503/30 (mod p) if p ≡ 1 (mod 3), −100/3 (mod p) if p ≡ 2 (mod 3). This paper also contains some new recurrence relations for Catalan numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combinatorial identity with application to Catalan numbers

By a very simple argument, we prove that if l, m, n ∈ {0, 1, 2, . . . } then

متن کامل

RIMS - 1824 Rigged Configurations and Catalan , Stretched Parabolic Kostka

We will look at the Catalan numbers from the Rigged Configurations point of view originated [9] from an combinatorial analysis of the Bethe Ansatz Equations associated with the higher spin anisotropic Heisenberg models . Our strategy is to take a combinatorial interpretation of Catalan numbers Cn as the number of standard Young tableaux of rectangular shape (n2), or equivalently, as the Kostka ...

متن کامل

9 M ay 2 00 8 IDENTITIES INVOLVING NARAYANA POLYNOMIALS AND CATALAN NUMBERS

Abstract. We first establish the result that the Narayana polynomials can be represented as the integrals of the Legendre polynomials. Then we represent the Catalan numbers in terms of the Narayana polynomials by three different identities. We give three different proofs for these identities, namely, two algebraic proofs and one combinatorial proof. Some applications are also given which lead t...

متن کامل

Catalan Triangle Numbers and Binomial Coefficients

The binomial coefficients and Catalan triangle numbers appear as weight multiplicities of the finite-dimensional simple Lie algebras and affine Kac–Moody algebras. We prove that any binomial coefficient can be written as weighted sums along rows of the Catalan triangle. The coefficients in the sums form a triangular array, which we call the alternating Jacobsthal triangle. We study various subs...

متن کامل

Staircase tilings and k-Catalan structures

Many interesting combinatorial objects are enumerated by the k-Catalan numbers, one possible generalization of the Catalan numbers. We will present a new combinatorial object that is enumerated by the k-Catalan numbers, staircase tilings. We give a bijection between staircase tilings and k-good paths, and between k-good paths and k-ary trees. In addition, we enumerate k-ary paths according to D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005